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SUMMARY
This document describes a method of accurately computing, in airborne fire control computers,

In Part I older computation methods and their limitations are described briefly and compared
with a new computation method, or algorithm. Part 1l presents a rigorous mathematical develop-
ment of the algorithm with examples of its accuracy for several typical Navy weapons.

The new algorithm can contribute significantly to the flexibility and effectiveness of Navy strike
aircraft. This method of calculation is applied through software, and it can be used in new
systems or reprogrammed into existing systems without increasing hardware cost.
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the impact range of free falling projectiles such as bombs or bullets. The document has two parts.
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a Aircraft acceleration
A Geometric altitude above sea level
Amax Upper limit of geometric altitude in each atmospheric region
Acvin Lower limit of geometric altitude in each atmospheric region
AC Coefficients of Chebyshev polynomials
AT Rocket acceleration due to thrust
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CN Coefficients in polynomial expansion of atmospheric model
D Diameter of projectile
DC Coefficients of Legendre polynomials
EC Coefficients used in the Legendre expansion
F General function
Fy Thrust of rocket engine
g Acceleration due to gravity
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h General integration interval
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i Number of integration steps taken so far
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T Turn radius
P, The ith Legendre polynomials
ix




e

pw

Lt

D162-10026-1

ABBREVIATIONS AND SYMBOLS (CONTD)

Local effective value of Earth’s radius

Symbol used to represent the expression 2/(Amax - Anin)
Time — measured from release

Time of drogue deployment on retarded weapons

Time of release

Time variable used with rocket mass and rocket thrust functions
The ith Chebyschev polynomial

Velocity

Velocity at release

Downrange component of velocity

Downrange component of velocity at drogue deployment
Downrange component of velocity at release

Vertical component of velocity

Vertical component of velocity at drogue deploy ment
Vertical component of velocity at release

General independent variable

Downrange position

Downrange position at time of drogue deployment
Downrange position at release

Impact range of projectile

Altitude above sea level

Altitude at drogue deployment

Altitude at release

Distance traveled in one calculation interval (At)

Dive angle deviation in one calculation interval (At)

Time interval between successive impact range calculations
Velocity deviation in one calculation interval (A t)
Altitude deviation in one calculation interval (At)

Dive Angle

Dot above symbol denotes derivative with respect to time; n dots denotes n-th derivative

Air density (mass)

Air density (weight)
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Ballistic Wind

CBU

CEP

Crossrange

Dispenser

Weapon

Downrange

Drogue

Ejection

Impact Range

RSS

Runge-Kutta
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DEFINITIONS
A precisely defined, step-by-step method of computing some quantity.

A constant, nonlayered wind which is equivalent to the actual wind in the respect
that it affects the impact point by the same amount.

Clustered Bomb Unit—a canister-type bomb which dispenses smaller bombs at some
point in its trajectory.

Circular Error Probable—the radius of a circle, centered about the expected impact
point, into which a projectile will fall with a 50% probability.

The horizontal distance measured in a direction 90 degrees clockwise from the
downrange direction.

Synonymous to CBU.
The horizontal distance measured in a direction away from the point of projectile
release and in the vertical plane which includes the release velocity.

A parachute, vanes, or other device deployed at the rear of a bomb to increase its
drag and slow it down.

Frequently bombs are physically ejected from an aircraft to ensure clean separation.

The velocity imparted to a bullet can be considered an ejection velocity.
The horizontal distance between the release and impact of a projectile.

Root Sum Square—the square root of the sum of the squares; a method used to add
probabilistic etfects of independent error sources.

The name of a class of formulas used to evaluate integrals. They are widely used in
calculating solutions of differential equations for which analytical solutions cannot
be found.

The path of a projectile.

The quantity of a computer memory normally required to store a single number or
instruction.
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1.0 INTRODUCTION

1.1 The Weapon Delivery Problem

Most aircraft weapons can be described as ballistic projectiles. That is, the only forces acting on
them in flight are gravity and acrodynamic drag. Bullets, streamlined bombs, drogued bombs,
clustered munitions, and unguided rockets (after burnout) are all ballistic projectiles. Guided
weapons and weapons developing lift are not ballistic projectiles.

For successful weapon delivery, the pilot of an airplane must mancuver his plane into a position from
which the weapon will fall to the target. The problem is made difficult in two ways. First, the
release must be done accurately because the impact range is very sensitive to release errors. Figure 1
shows how the distance a bomb travels changes as bomb release conditions change. Heading, dive
angle, speed, altitude, and range from the target must all be exactly right when the weapon is
released. The second difficulty is selecting a correct combination of all these factors. The path of a
ballistic projectile is curved; and the precise curvature depends on the atmospheric density, the size
and shape of the projectile, and the speed and dive angle at release.

Several pilot aids and delivery tactics have been developed to ease weapon delivery problems. Bomb-
sights, release timers, and computers are some of the devices: dive bombing is a delivery tactic which
minimizes the effect of errors at weapon release.

1
M117 STREAMLINED BOMB
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Figure 1. Bomb Trajectories
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The obvious solution to this problem is to have the fire control system calculate the correct range

to release the weapons for any speed, altitude, and dive angle. Because this calculation is so difficult,
no operational fire control system can accurately compute range for all the weapons and delivery
conditions used. The inability to perform this calculation accurately is a significant source of
weapon delivery error for all current aircraft. Equally important, delivery tactics become constrained
to those for which the fire control system can do a fairly good job.

The subject of this document is a new computing method, or algorithm, for the calculation of
weapon range. This method can be used for any ballistic projectile, and it produces accurate
answers for any release condition operationally possible. This algorithm can be used in current or
future fire control systems having a digital computer.

1.2 History of Calculation Methods

The path of a ballistic projectile can be described by a relatively simple-appearing set of differential
equations. If drag is left out, numerous complications can be added to the basic equations of
motion (e.g., the rotation of the earth), and a mathematical solution can still be found. This is not
true once drag has been included, because an accurate description of the drag is mathematically
difficult. Drag is a function of the projectile’s size, speed, and drag coefficient, as well as air density.
Air density varies primarily with altitude and secondarily with conditions such as the weather,
latitude and time of year. The drag coefficient varies with Mach number, which in turn varies with
speed and air temperature, which varies with altitude and so on, just as atmospheric density does.
These factors are empirically determined and are nonlinear. At any given speed or altitude the drag
acting on a projectile can be calculated, but an accurate function describing the drag cannot be put
in the differential equations to solve for the time of fall or point of impact.

A way around the lack of a solution has been known for a long time. All the bombing tables and
other ballistic tables are calculated by a process known as “‘numerical integration.” In this process,
the total path is divided into many pieces, and each piece is worked with an approximation that
all forces remain constant for short time periods. A mathematical formula with constant forces
permits easy calculation of the position and velocity of the projectile at the end of 0.1 second, for
example. The forces on the projectile are calculated for the new point and used for the next 0.1
second. Figure 2 illustrates how this process can be made as accurate as desired by taking smaller
and smaller steps.

A typical ballistic table trajectory calculation may divide the fall of a bomb into a thousand segments.
This yields very accurate answers, and each answer takes only a few seconds on an IBM 7094 com-
puter. However, this is too long and the 7094 computer is too large for aircraft fire control systems.
Therefore, numerous other methods have been used in the aircraft to provide weapon range informa-
tion to the pilot.

The first advance in fire control computation was the manually adjustable sight (“depressed reticle”).
Before flight, a pilot selects the speed, altitude, and dive angle he wants to use to attack a target.

He goes to a ballistic table which gives the angle by which the weapon will deviate from straight line
travel when it reaches the ground, if released at those conditions. The pilot sets his sight to this
angle. Now if he can maneuver the aircraft to the selected speed, altitude, and dive angle at the
instant the target is in the sight, he will get a hit. A deviation in any one of them, however, will
result in a large miss. Accurate weapon delivery can be done with such a system, but it requires
excellent pilot control. This degree of control can be attained only by using intensively practiced
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delivery maneuvers. Always using the same maneuver in combat is dangerous; moreover, the finesse
achieved by a test pilot on a practice range is not readily duplicated by a green pilot under combat
conditions. As a result, aircraft with relatively simple fire control systems may demonstrate delivery
errors under 100 feet on a test range, but produce average errors over 1,000 feet in combat.

The most modern systems (e.g., F-111, A-6A) provide “universal” mode weapon delivery, using a
digital computer in the fire control system continuously compute weapon range for current condi-
tions (speed, altitude, dive angle, wind). Now displays can be driven to aid the pilot in steering

the aircraft to a release point. In one example, a heads-up display shows where the impact point of
a weapon would be if released nght now, and how that point will move if the speed, heading, etc.,
are maintained. Since the pilot can also see the target through the display, he has the information
needed to maneuver the airplane smoothly to a release point, and he maintains considerable latitude
in just how to do it. This degree of flexibility and naturalness contributes to a very significant
improvement in the operational usability of the aircraft and the accuracy of delivery.

The modern “universal’” systems are not sufficiently accurate, however, and their universality has
some severe limits. The inaccuracy is due to the previously discussed difficulty of calculating a
ballistic trajectory. Approximations have been made to keep the calculation simple and fast enough
for the airborne computer. Usually a simplified form is assumed for the drag function which permits
the differential equations of motion to be solved analytically. This solution is evaluated by the
airborne computer. For a given type weapon, this simplified approximation can work well over a
limited range of release conditions. Outside these conditions, the errors in the approximation
gradually introduce larger and larger errors. For a different weapon or delivery regime, another
approximation and set of equations are needed. As a result, the organization inside the fire control
computer begins to look like older systems with many “canned” delivery modes. Since limited
computer storage is available for different modes, the approximations are patched up to work within
certain limits (say a 100-foot error) over a fairly wide range. Thus the approximation to truly i
universal operation is achieved at some loss in accuracy even at those conditions for which the
system is optimized.

In 1967, algorithms submitted in proposals by leading fire control vendors were evaluated at The
Boeing Company. The best of these was embodied in a computer program and tested over a wide
range of conditions, for both streamlined and drogued bombs, Sample results are shown in Tables 1
and II. No existing fire control system would include exactly these equation errors, but they are
typical of the 1967 state-of-the-art. Note that these errors come from the equations alone, with no
allowance for round-off errors, sensor errors or steering errors. It is clear that refinement could
reduce the systematic errors, but not enough to make them insignificant.

~

t
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Table | Typical Equation Errors — M117 Bomb

FLIGHT PATH ANGLE AT RELEASE
45°DIVE LEVEL 45°T0SS
ALTITUDE TRUE EQUATION TRUE EQUATION TRUE EQUATION
(FT) RANGE (FT) | ERROR(FT) | RANGE (FT) | ERROR (FT' | RANGE (FT) | ERROR(FT)
2,000 1,885 ~15 10,864 =330 28,559 -718
5,000 4,367 =37 16,853 -399 31,031 -905
10,000 7,832 -64 23,333 ~528 34,626 -1,22%
15,000 10,683 =71 28,035 -621 37,739 -1,524
REFERENCE: NAVAL WEAPONS LABORATORY BALLISTIC TABLE NUMBER 101,
CONDITIONS: TARGET AT SEA LEVEL
NO WINDS
NO EJECTION VELOCITY
600 KNOTS RELEASE SPEED
+MEANS CALCULATED RANGE IS TOO LONG
~ MEANS CALCULATED RANGE IS TOO SHORT
Table Il Typical Equation Errors — Mk 82S Bomb
RELEASE SPEED
200 KNOTS 400 vKNOTS 600 KNOTS
ALTITUDE TRUE EQUATION TRUE EQUATION TRUE EQUATION
(FT) RANGE (FT) | ERROR(FT) | RANGE (FT) | ERROR(FT) | RANGE (FT) | ERROR (FT)
500 1,507 -7 2,483 +78 3,111 +185
1,000 1,919 -11 3,010 +99 3677 4329
2,000 2,360 -26 3,554 4101 4,255 +345
5,000 2,901 =91 4,244 +23 5,007 4267
REFERENCE: NWL BALLISTIC TABLE 010
CONDITIONS: LEVEL RELEASE
TARGET AT SEA LEVEL
NO EJECTION VELOCITY
NO WIND
2
(8 Blank)
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2.0 NEW CALCULATION METHOD

2.1 Development

Research provided the clue which led to a calculation ureakthrough. Work with mathematical series
expansions showed better results if the equations were converted into a series with range, instead of
time, as the independent variable. Applied to the numerical integration technique, this meant that
instead of dividing the trajectory into segments (e.g., of 0.01-second duration) the trajectory would
be divided into segments (e.g., covering 10 feet of downrange travel). The first experiments showed
good accuracy (errors of a few feet or less) could be obtained with 10 or fewer integration steps,
giving about a 100 to 1 improvement over the number of steps used to calculate the precise ballistic
tables. Two years work produced refinements to extend the range of weapons and delivery conditions
which could be handled by the same basic method. Later, other refinements increased the speed of
computation. This development process is continuing, but the new algorithm is better in its current
state than any computation method now used in an aircraft fire control computer.

Py Description

The new algorithm is accurate and flexible because most of the calculation is performed in the same
manner that ballistic tables are calculated. At first, exactly the same equations were used to calculate
atmospheric density, speed of sound, gravity acceleration, and drag coefficient. Later work has
developed new equations which yield the same answers, but can be computed faster. At no point in
the basic equations (the models of the physical world) has any approximation been used that is dif-
ferent from those accepted and used in the calculation of ballistic tables.

Figure 3 illustrates how the numerical integration process of the algorithm works and the essential
differences between it and the process used in ballistic table calculation. Figure 3, Point A, shows a
defined release point (speed, altitude, and dive angle). We know everything necessary about the
release point. The impact range is to be calculated.

The range of the impact point must be estimated first so the size of the calculation intervals can be
chosen. The range the bomb would go in a vacuum is the estimate used. This estimate only depends
on the release conditions and is calculated easily with a single equation. (See Figure 3, Point B.)

Figure 3, Point C, shows the range estimate divided into five equal integration steps (an arbitrary
number of steps based on experimental results). This division limits the amount of calculation
required. If total calculation time is to remain small and fixed (a requirement for airborne use), the
number of integration steps must remain small and fixed.

Integration is shown in Figure 3, Point D. Starting at the release point, the position, velocity, etc.,

of the projectile is calculated as it reaches the range corresponding to the end of the first step.

(See ““1,” Point D.) No trajectory calculations are done at any point between the ends of the steps.
To calculate *“1,” begin with the release point and calculate the average value of the forces acting

on the projectile between release and 1"’ The simplest estimate would be that the forces are the
same throughout the interval as at release. This estimate is good only if the interval is very short

or if the forces change slowly. A better estimate is needed to use long, but few, steps. This is
obtained through the Runge-Kutta technique of numerical integration. The one used in the algorithm
is the “standard, fourth-order, Runge-Kutta technique.”
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The average values of the forces in the interval, expressed as functions of range, are multiplied by the
length of the step to find a close approximation of 1" The same practice is repeated to go from “1”
to “2” and so on until ““5” is reached.

At ‘S the computer notices that the calculated position is under ground. It is not known where
between “4” and “S” the projectile struck the ground. Recall that the original differential equations
of motion were functions of time. These equations were rewritten to be functions of range. Now a
new set is used, with the same equations rewritten to be functions of altitude. In altitude, it is easy
to decide the required step length. The step length is just the difference between the altitude of “S”
and the target altitude. (See Figure 3, Point E.) One more integration step, using the same integra-
tion technique with slightly different equations, carries the calculation to precisely the target altitude.
This method of locating the impact point is an improvement over the way it is done in ballistic table
calculations. It is obviously wasteful, though, to calculate forward to ““5’’ and back to the impact

or return to “4” and take a step down in altitude to the impact point. A set of logical tests was
developed to detect the last point above ground and initiate the change to the altitude coordinate.
(See Figure 3, Point F.) These tests also detect cases (as in drogued weapons) where the trajectory
has become so steep that it is more accurate to take the remaining steps in altitude than in range.

The basic integration method applies to any ballistic projectile, but some adaptation is required for
each type weapon. The adaptations included in the algorithm are described briefly below:

2.2.1 Streamlined Bombs

The process described fits streamlined bombs exactly. It is only necessary to provide the bomb size
and a table describing how the drag coefficient of the particular bomb varies with Mach number.

Tl Bullets

After being fired, a bullet is really just a small, streamlined bomb and is handled as such. The
muzzle velocity of a particular gun-bullet combination is added to the aircraft velocity at release,
as velocity imparted to a bomb by an ejector would be added. The weight and drag coefficient
table must be provided as well as muzzle velocity, just as for a bomb.

223 Drogued Bombs

These bombs are more difficult to model accurately. Their common characteristic is that they are
released in a relatively low drag configuration. At some time after release they deploy vanes or a
parachute which greatly increases total drag. There is no basic difficulty in calculating bomb
trajectory before the drogue is deployed. Nor is there a basic difficulty in calculating the trajectory
after the drogue is deployed. The problem js to break the calculation correctly into two parts, one
using each drag function.

This has been worked out very satisfactorily in the algorithm for the Mk 82S bomb. The time
until the drogue opens is about half a second. The procedure used is: (1) Calculate the time of
drogue deployment using the exact equations; (2) Use a simple approximation (Tayloi’s series
expansion) to find bomb position and velocity at the time the drogue opens; and (3) Use the
basic algorithm with the correct drag to integrate the drogued trajectory down to the point of
impact.
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Computation for other drogued bomb types, such as the Mk 43, will require adding appropriate
logic for the particular drogue deployment mechanism.

2.2.4 Bluff Bombs

These are new bombs, such as the BLU-58, which may or may not be drogued. Bluff bombs are
treated satisfactorily as streamlined or drogued bombs, depending on whether they are drogued.

2.2.5 Cluster Bombs

These weapons are released as fairly large, low-drag containers. At a predetermined point in their

fall, they ust ome mechanism to dispense smaller weapons. These smaller weapons are higher drag
than the container and may also develop lift. The fire control computer should predict the impact
location of the center of the pattern rather than individual positions of the small bombs. The method
of applying the algorithm is to calculate the trajectory of the container to the point where it dis-
penses the small weapons; switch to a drag function which describes the motion of the pattern

center; and integrate down to the ground. Once again, the important factor is providing the logic

to switch the drag function at the right place.

2.2.6 Rockets

Work is underway to extend the algorithm to include unguided rockets and tracer bullets. Rockets
present several new problems. They change weight during flight; they have thrust (at varying levels)
as well as drag; and they slew around just after firing because their launchers are not lined up with
the aircraft direction of flight. It is felt that adequate provisions can be made for these problems in
the algorithm.

2.3 Results

A characteristic of numerical integration techniques is that they can be made as accurate as desired
by taking more integration steps. However, taking inore steps requires a more expensive fire control
computer. A standard suggested by R. Seeley of Naval Weapons Center, China Lake, has been
adopted: The calculation error is insignificant if it is less than 10 feet or 1 milliradian of angle
(0.06 degree) as measured from the release point. The arbitrarily chosen standard of five integration
steps in range (plus one in altitude) provides answers which are almost always within this standard,
even for release conditions far outside the usual precision delivery envelopes.

Before presenting the results obtained for some typical weapons, one characteristic of the tables
must be explained. The differences between the calculated range and the reference range have been
rounded to the nearest foot as done in the reference ballistic tables. These two rounding processes
(in the ballistic tables and in the error calculation) introduce an uncertainty of about one foot into
the errors given. In the case of small errors, this gives an erratic appearance to the numbers. The
errors, measured in feet, are given as positive if the calculated range is longer than the reference

and as negative if the calculation falls short. When the errors are converted to an angle for compari-
son with sighting errors, the absolute value is taken. The angles are rounded to the nearest tenth

of a milliradian for the same reason that the linear errors are rounded to the nearest foot. Finally,
the percentage error of the calculated time of fall is given. This can be important in operation,

e.g., for wind correction.
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Table 111 compares the new algorithm to that discussed earlier, using the M117 streamlined bomb.
Tabie IV compares the two algorithms for the Mk 82S drogued bomb. Table V is for a bomb for
which the calculated ballistic tables cover a wide range. The algorithm continues to give respectable
results up to the table limits. Mach 2 at 70,000 feet is well outside the operational envelope of any
system trying to precisely deliver conventional, unguided weapons. The generality of the method
which achieves these results, however, provides the capability to handle the new weapons or new
tactics not planned for when a system is built, but which become operational requirements.

Table VI shows the accuracy achieved with a typical gun and round combination. Actually, a
single integration step gives fairly good answers.

These examples cover the range of general weapon types to which the algorithm has been applied.

There should be no difficulty in obtaining similar results for other specific weapons of these
general types.

Table Ill Algorithm Error Comparison — M117 Bomb

RELEASE ANGLE
T ° DIVE LEVEL 15°708S
(FTYAND | RANGE | ANGULAR| TIME RANGE | ANGULAR| TIME RANGE | ANGULAR | TIME
ALGORITHM| ERROR ERROR | ERROR ERROR ERROR | ERROR ERROR | ERROR ERROR
(FT) (MR) (%) (FT) (MR) (%) (FT) (MR) (%)
2,0000LD| -I5 4.0 0.4 -330 56 2.3 -718 18 0.9
2,000 NEW| +1 0.3 0.0 0 0.0 0.0 -2 0.1 0.1
50000LD| =37 4.2 0.2 ~399 6.6 1.3 -905 4.7 13
5,000 NEW 0 0.0 0.0 -1 0.0 0.0 -38 0.2 0.1
10,0000LD| -64 4.0 0.1 =528 8.4 0.8 -1,226 9.8 1.2
10,000 NEW| 43 0.2 0.1 0 0.0 0.0 -63 05 0.1
15000 0LD| -71 3.1 0.3 -621 9.4 0.7 -152 14.4 1.2
15000 NEW| 42 0.1 0.0 +2 0.0 0.0 -85 0.8 0.1

REFERENCE: NAVAL WEAPONS LABORATORY BALLISTIC TABLE NUMBER 101, JULY 1967
CONDITIONS: 600 KNOT RELEASE SPEED

TARGET AT SEA LEVEL

NO WIND

NO EJECTION VELOCITY
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Table IV Algorithm Error Comparison - Mk 82 Snakeye Bomb

RELEASE SPEED (KNOTS)
RELEASE
ALTITUDE 200 400 600
(FT)AND [ RANGE | ANGULAR| TIME RANGE | ANGULAR] TIME RANGE | ANGULAR] TIME
ALGORITHM! £RrOR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR
(FT) (MR) (%) (FT) (MR) (%) (FT) (MR) (%)
500 OLD = 14 06 +78 5.9 15 +185 37 1.4
SOONEW]| 41 0.2 0.0 0 0.0 0.0 0 0.0 0.0
1.0000LD | -1 2.3 0.3 +99 9.5 0.9 +329 20.9 0.8
1,000 NEW 0 0.0 0.1 +l 0.1 0.0 0 0.0 0.0
20000LD| -2 5.5 0.0 +101 119 0.7 +345 29.3 0.7
2,000 NEW 0 0.0 0.0 0 0.0 0.0 =3 0.0 0.1
50000LD| -91 13.7 0.3 +23 2.7 1.0 +267 2.0 15
5000 NEW |  +1 0.2 0.0 =0 0.2 0.1 -1 0.1 0.0
REFERENCE: NAVAL WEAPONS LABORATORY BALLISTIC TABLE NUMBER 010, OCTOBER 1964
CONDITIONS: LEVEL RELEASE
TARGET AT SEA LEVEL
NO WIND
NO EJECTION VELOCITY
Table V Algorithm Accuracy — Mk 76 Bomb
RELEASE SPEED (KNOTS)
RELEASE 400 600 1,200
ALTITUDE
(FT) RANGE [ ANGULART TIME RANGE [ANGULAR| TIME RANGE | ANGULAR[ TIME
ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR
(FT) (MR) (%) (FT) (MR) (%) (FT) (MR) (%)
1,000 0 0.0 0.0 i 0.0 0.0 ) 0.0 0.0
5,000 =2 0.1 0.1 -11 0.2 0.1 -40 0.5 0.1
10,000 -3 0.1 0.0 -2 0.5 0.0 ~152 22 0.1
20,000 T 0.5 0.0 -42 0.8 0.0 9] 12 0.1
30,000 =21 0.4 0.0 -8 0.8 0.0 =2 0.3 0.0
40,000 -2 0.4 0.1 -15 0.2 0.2 -39 0.4 0.3
50,000 ~25 0.4 0.2 -182 2.2 3.1 =73 06 0.1
60,000 +2 0.3 0.1 -38 04 0.2 -3% 0.3 11
70,000 +7 0.1 0.1 -79 0.7 46 =21 0.1 18

REFERENCE: NAVAL WEAPONS LABORATORY BALLISTIC TABLE NUMBER 086, OCTOBER 1966
CONDITIONS: LEVEL RELEASE

NO WIND

TARGET AT SEA LEVEL

NO EJECTION VELOCITY

14
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Table VI Algorithm Accuracy — M61 Gun with M56 Round

RELEASE ANGLE
ELE':'_I%SDEE 10°0DIVE 15° DIVE 20°DIVE
(FT) RANGE | ANGULAR| TIME RANGE | ANGULAR| TIME RANGE | ANGULAR| TIME
ERROR ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR ;
(FT) (MR) (%) (FT) (MR) (%) (FT) (MR) (%) 3
500 0 0.0 0.0 NO pe '
FERE,
750 =] 0.0 0.0 NCE VaTugs
1,000 - 0.1 0.4 0 | 00 0.7% 0 0.0 1.0*
1,250 -1 0.1 0.0 0 0.0 0.0
NO o . s
1,500 REFEREMCE VALUES 2 0.1 0.3 0 0.0 0.5
1.750 -1 0.1 0.4*

*TIME ERROR OF 0.01 SECOND
REFERENCE: ARMAMENT MEMCRANDUM REPORT 64-5, FEBRUARY 1964
CONDITIONS: 400 KNOTS RELEASE SPEED

NO WIND

TARGET AT SEA LEVEL

15
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3.0 OPERATIONAL SIGNIFICANCE

3.1 Attack Aircraft Application

The primary goal of the algorithm development is to apply it to aircraft intended to deliver unguided,
nonnuclear weapons. The best estimates show that it will fit easily into the new fire control com-
puters, such as that in the A-7E, in place of the calculation methods now used. More development is
required to move the algorithm from the status of a research tool to an operational tool. When this is
achieved, however, it will be possible to retrofit the algorithm into existing aircraft just by changing the
computer program.

Preparation of this document is an early step in a contract with Naval Weapons Center, China Lake.
The primary objective of the contract is to do the mathematical development work necessary to

bring the algorithm to a point where it could be programmed for the A-7E fire control computer.

3.2 Contribution to System Performance

There is some confusion and controversy over the accuracy of a fire control system. A given aircraft,
on a test range with the pilot’s option of delivery conditions, might be able to deliver streamlined
bombs with a 100-foot circular error probable (CEP). The same airplane may record an average
target miss of 1,000 feet in North Vietnam. The amount by which the algorithm can improve the
basic mechanical ability of the system can be estimated. What this improvement will amount to in a i
combat situation is difficult to establish. |

An error in the fire control equations will result in a fixed-bias error. Over a reasonable range of
conditions, however, this bias error will vary and may be treated—without gross injustice—as a random
error. Figure 4 illustrates the contribution to total system error which would be made by a random
equation error of 50 feet or 100 feet. There are two basic bars: one labeled 1968 technology;
another labeled 1975 technology. These represent calculated weapon delivery errors which include
all the estimated sensor errors and pilot errors (sighting, steering) for first quality systems of the
indicated time periods. The conditions chosen for evaluation are shallow-dive deliveries of stream-
lined bombs with release about 8,000 feet from the target. 1

Extensions above these bars show how errors are increased if the fire control equations introduce
random errors averaging 50 feet or 100 feet in size. The 100-foot figure is probably the better esti-
mate of current calculation error. Random errors add according to the square root of the sum of
the squares. Also, the errors introduced by computation are not the largest part of the total. The
effect on system effectiveness is more apparent if one considers that the chance of killing a point
target is generally proportional to one over the square of the CEP.

The change in system accuracy produced by switching to an algorithm which produces very small
errors is significant. This improvement comes almost free compared to the cost of adding newly
developed avionics. It is believed that the change in computation method will result in a system
which also is less susceptible to combat degradation. The improved flexibility will permit the use
of more varied tactics, which will contribute to improved aircraft survival. A better chance of
survival should improve pilot performance—if only through practice. Also, the improved compu-
tation and display techniques using it can lighten the pilot’s workload during the critical weapon
delivery run.
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CALCULATED TEST RANGE ACCURACY WITH DELIVERY TACTICS TYPICAL OF S.E. ASIA
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Figure 4. Contribution of Computation Errors to System Errors
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1.0 INTRODUCTION

Part I presents the mathematical aspects of finding the impact range of a projectile. Major topics
covered in this part are: (1) the basic mathematical model, (2) different coordinate systems,

(3) integration process, (4) adaptations to various weapons, and (5) sample results. Coverage of
these topics leads to an algorithm for calculating weapon impact ranges.

The basic technique used in the algorithm is to transform the differential equations so that down-
range is the independent variable. Then the fourth-order, Runge-Kutta integration formulas are
used to integrate these differential equations to obtain the impact range. Two variations of the
basic technique are presented for special cases: (1) when the weapon trajectory becomes very
steep, it is desirable to switch the integration process to a set of differential equations with altitude
as the independent variable; (2) when dealing with time-fuzed dispenser weapons it is convenient
to integrate the differential equations with time as the independent variable over the segment of
trajectory between release and fuzing.

Application of the algorithm presented in this document depends on the availability of a current,
advanced, airborne, digital computer. Also, it depends somewhat on the fact that the weapon impact
range will be calculated repetitively. This process provides a good estimate of the integration interval
size and, consequently, saves calculation time.

21
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2.0 MATHEMATICAL MODELS AND THEIR INTEGRATION

The differential equations describing the motion of a projectile are discussed in this Section. These
equations are given first with time as the independent variable. Then they are transformed twice;
once to make the downrange, X, the independent variable and again to make the altitude, Y, the
independent variable. Also discussed are the basic method used for integration and the comparative
efficiencies resulting from the use of the different coordinate systems. In this section, the discussion
is limited to streamlined bombs. Adaptations to other weapons are given in Section 3.0.

2.1 Basic Differential Equations

The development of an effective weapons release system is inherently dependent upon obtaining
solutions of the equations for the motion of a projectile within the atmosphere. This is generally

a difficult mathematical problem which has not been solved completely. The major difficulty stems
from the nonlinearities introduced by the atmospheric effects on a falling weapon.

In choosing the mathematical model, two considerations have been kept in mind. The major objec-
tive of the mathematical analysis is to yield the weapon impact point. The main effect of this is
that the weapon mass can be assumed to be a point mass. Also, the choice of the model is dictated
by the need to evaluate results against some standard. Since the armed forces publish range tables
for various weapons, the model is chosen to conform as closely as possible to the model used for
these tables.

The equations of motion are developed assuming the projectile is a point mass acted on only by the
force of gravity and the retardation forces due to air resistance. The trajectory can be restricted to
a plane by ignoring crosstrack effects such as winds. For practical applications, the effect of winds
can be accounted for in a straightforward manner.

The assumptions adopted are summarized below:

The Earth is flat and nonrotating.

The gravitational attraction is a function of altitude.
The projectile is a point mass.

The projectile is not powered and has a constant mass.

eooe

Under these assumptions, the differential equations of motion have the following form. (See
Reference 1 for a complete discussion.)

"
dX, qhdk_g
dt? dt

2-1)
d2y . .. dY
L LA

3 H=— +g(Y)=0
dt dt

23
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where X, Y, and t denote downrange, altitude, and time, respectively. The coefficient H ,
which is the drag function, is given by

H=+D%Kp V, (2-2)
where P is the atmospheric mass density, M is the bomb mass, D is the bomb diameter, Kp is
the weapon coefficient of drag, and V is the velocity. The atmospheric density P is given as a
function of altitude which is fitted to measured values of atmospheric density. Kp » which is equal
to -g-CD , is empirically derived and given in tabular form as a function of mach number. The
gravitational acceleration of a point mass above the surface of the Earth is given by

2

RE
s(Y)=g, = (2-3)
(RE +Y)-

where g, Is the local value of gravity at sea level and RE is the local value of the Earth’s effective
radius.

The above differential equations are not analytically integrable if an accurate model of H is used,
because an accurate model would render them extremely nonlinear.

The two second-order, differential equations given in (2-1) will now be rewritten as four first-order,
differential equations. This is done to get the differential equations in a form which is more
suitable to the integration process used. Two new variables Vx and Vy are defined by

e
(24)
dy _
"ER
Substituting the above expressions in equations (2-1) results in
dvy
W R
(2-5)
dVy
& = HVy-s® ;

The four first-order, differential equations (2-4) and (2-5) are the desired equations with time as the
independent variable. d N

s
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2.2 Transformation of Basic Equations

For reasons which will become clear later in the document, it is desirable to transform the differential
equations of motion into two other forms. One form uses downrange X as the independent variable
(X-based), and the other form uses altitude Y as the independent variable (Y-based).

The terms X-based, Y-based, and time-based are adopted to ease the terminology in the text.

The transformation to make X the independent variable will be performed first. Multiplying the

; X dt 1
equations in (2-5) by =< or 7—
dX Vx

dt 1
(Notcz — T c— )‘
ax Vs
dV
e 2
Ix H (2-6)

dVy  -HVy -g(Y)

= 2-7)
dX Vx
Similarly, the equations in (2-4) can be transformed to
.d_Y. = X—Y— (‘7_8)
dX Vx
and
dt 1
= v (2-9)
dX Vy

Equations (2-6) through (2-9) now represent a complete formulation of the ballistics equations in
terms of the variables Vx, Vy. Y and t, with X asthe independent variable. Note that the

equations in (2-6), (2-7), and (2-8) are uncoupled from (2-9), the equation involving time. Therefore,
the first three equations (2-6), (2-7), and (2-8) can be solved simultancously without solving for the
variable t by equation (2-9). Figure 5 shows the salient features in the X-Y plane.

25
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RELEASE POINT

IMPACT

ARGET HEIGHT

T
—

MEAN SEA LEVEL

Figure 5. Salient Features in X-Y Plane

One can form a set of differential equations with Y as the independent variable in a similar fashion.

Multiplying the equations in (2-5) by % or vl-?

(Note: dd—t =\l,—Y)results in
dVv \Y
X X
= TH2 (2-10)
dY Vy
dv
— w3 B :
v H vy (2-11)

Also, from (2-4)
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Equations (2-10) through (2-13) represent a complete formulation of the ballistics equations in terms
of the variables VX , Vy, X and t, with Y as the independent variable. Note, as before, the

equation involving time (2-13), is uncoupled from the other three equations.

Also note that the equations with X as the independent variable, (2-6) through (2-9), become
indeterminate when Vy is zero (e.g., when the projectile is coming straight down), because Vy

appears in the denominator. Similarly, the equations with Y as the independent variable, (2-10)
through (2-13), become indeterminate when Vy is zero (e.g., at level release). Consequently, the

two sets of equations must be used accordingly.

The basic set of differential equations in the integration procedure developed here is X-based. This
choice was based on experimental evidence which showed that this set of equations gave the most
favorable results. A sample of this experimental evidence is given in Section 2.4. The other two sets
of equations are used in special cases. When time fuzing is involved, it is convenient to use the time-
based equations for the part of the trajectory between release and fusing. Y-based equations work
best when the trajectory is very steep; i.c.. the projectile is coming almost straight down.

2.3 Integration Procedure

As pointed out earlier, the differential equations describing a projectile’s trajectory are not analytically
integrable if an accurate model of function H is used. Consequently, a numerical integration pro-
cedure must be used. The approach taken in the generation of ballistic tables is to integrate the
differential equations numerically, using time as the independent variable. Many steps are taken to
insure the desired accuracy. (A typical step length is 0.01 second.) This method is accurate and
flexible, but requires too much computer time to be suitable for weapon delivery application.

The procedure which proved to be most successful in climinating this shortcoming is to use the
fourth-order, Runge-Kutta integration formulas with the X-based, differential equations to
integrate the trajectory to the vicinity of the impact point. Integration of the Y-based equations
is then used to locate the impact point precisely, since its Y-coordinate is known. An estimate

of the required computer time and memory for using this procedure to calculate a weapon impact
point is given in Section 4.1.

Time-based and Y-based equations are used with the X-based differential equations in special
cases. For example, it is convenient to use the time-based equations for the powered segment
of unguided rocket trajectory and for the first segment of the time-fuzed dispenser weapon
trajectory. It is desirable to switch to the Y-based equations when a weapon trajectory becomes
very steep like at the end of the long trajectory of a drogued bomb.

Details of the integration procedure and the fourth-order, Runge-Kutta formulas are described in
Sectior 1.3.1. Application of these formulas to the X-based, differential equations is described

in Section 2.3.2.

2.3.1 The Runge-Kutta Integration Formulas

The Runge-Kutta formulas provide a step-by-step method of finding dependent variable values at
given intervals of the independent variable. That is, values of the dependent variables at a
particular value of the independent variable are found in terms of their values at the previous step.
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Knowing the differential equations of a given system and the initial conditions, this process may be
continued until the desired range is covered. This integration method requires no preliminary
differentiation of the dependent variables beyond those prescribed. This makes it particularly

useful if certain coefficients in the differential equations are empirical functions for which

analytical expressions are not known.

The standard, fourth-order, Runge-Kutta formulas, which yield very good results even for coarse
integration intervals, are described for a system of three ordinary differential equations. Consider

the system of differential equations.

For example, if the X-based cquations describing a projectile’s trajectory were to be solved, then the

X, Y, Vy, Vy)

(X, Yy VX9 VY)

(X, Y, Vyx, Vy)

above equations would be of the following form.

(See equations (2-6), (2-7), and (2-8))

ot §
Vx

(2-14)

(2-15)

If h is the integration interval, the (n+1)th values of Y, Vx , Vy are computed from the nth

values by

Yn+| i
Vv =
xn+l

vYn+l &

!
Y, +g (Ko + 2K) + 2K,

LM

Vxn+6 +2M| +2M2

0

Vy +g (No + 2N] + 2N,

28

+ K3)
+ M3)

+ N3)

(2-16)
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where
KO = hrl (xnv Yny Vxls vYn)
B s e 1 s 1 1
l\l = h l"l (Xn + 5 h, Yn + 3 l\o, Vxn + -SMO, vYn+?NO)
K> = hF (X +-!-h,Y +lK,V +LM Vv +LN)
2 1 n ) n i) My ot N 2l
Ky = hF X +hY, + Ky Vy + My,Vy + N
g BEL Gl Ny 3 ¥ t Mo i)

(2-17)

and the values of M, M, M5, and M3 are computed by exactly the same formulas as the corre-
spondingly subscripted K’s, except that F, is used instead of F . Similarly, No. Ny, Ny and
N3 are computed using F3 instead of Fy.

The fourth-order, Runge-Kutta formulas can be expanded in a similar fashion to a system of four
first-order, differential equations.

When applying numerical integration formulas, it is necessary to decide the size of the integration
steps. For this problem, where very few integration steps are taken @.c., on the order of five), the
step size depends largely on the impact range of the specific trajectory. Therefore, it is necessary to
have an estimate of the impact range before starting integration.

One way of obtaining this estimate is to use the vacuum trajectory in finding the impact range. This
works well for low-drag bombs; however, this estimate may be off by as much as a factor of two or
three in the high-drag bomb case. Estimating the impact range will not be a problem in practice.
Since the impact range will be calculated repetitively, one will always have a good estimate of the
impact range once the process is started.

e Integration Algorithm

Originally, the integration was performed in the following manner. The fourth-order, Runge-Kutta
formulas were applied to the X-based, differential equations, (2-6), (2-7), and (2-8), with a test
performed after each integration step to determine whether the bombs were below target altitude.
When the bomb was found to be below this altitude, a switch was made to the Y-based equations,
(2-10), (2-11), and (2-12). Then a single integration step was taken to the target since the integration
step size in the Y-based system was known exactly. (See Figure 6.) Using this procedure, it was
found that the solution accuracy for drogued weapons degraded rapidly as release altitude went
above 2,000 feet. VX was so close to zero at impact that some of the approximations internal to the

Runge-Kutta process had VX either zero or negative. As Vx appears in the denominator, it

renders the expression indeterminate. The problem was resolved by adding two logical tests to the
calculations.
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Figure 6. Equation Rooting - Integration in Y

Coordinates are switched if the vertical distance the bomb fell in the last downrange integration step
is greater than the distance to the ground. If the next integration step would put the bomb far
below the ground, this replaces a long step in X and a long step in 'Y with a short stepin Y.
Calculation time is saved and accuracy is improved.

The other test is on the ratio of velocity components. When the vertical velocity is larger than the
horizontal velocity, the coordinates can be switched to advantage. Different steepness criteria,
ranging from | to 5, have been tried. Now the test is of this form:

If — > 2, switch coordinates.

Since this switch may take place some distance from the impact point, it is sometimes necessary to
take more than one stepin Y.
A very simple method is used now. If the estimated range was divided into Ny steps and “i” is the
number of steps taken so far, then the number of Y steps to take is:

My = Nx - i + Lif(Ng- i)>0, or

My = 1, if (Nx - 1) €0.
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The addition of these two tests has made it possible to calculate Snakeye trajectories from releases
as high as 70,000 feet without encountering singularities.

One final topic concerning the integration algorithm needs to be covered. This concerns the question
of how many integration steps are required in the process of solving for the weapon impact point,
The final result is more accurate with a large number of integration steps, but computer time is
increased. The final results may not be sufficiently accurate if too few steps are taken. Therefore,
when choosing the number of integration steps to be used, a trade-off exists between accuracy and
computation time.

It was decided on the basis of experimental results to use five integration steps now. A typical
example of these results is given in Figure 7. This number of steps is somewhat arbitary and could
be adjusted easily for specific applications.

\
0 — \ M117 BOMB
A 800 FEET 'SECOND
30 '\ LEVEL RELEASE
L)
" RELEASE ALTITUDE
0 . 30,000 FEET
= '
= E \/
& 10 ;
= \'- Swmme
% Ih‘s -.-~~'~.
0 — - o 3.-...: - a» e -.,.-.- »
4
J 10,000 FEET
=10 _.":\_
V 20,000 FEET
-20 ] | ] | Al | L | J
i 2 3 4 5 6 7 8 9 10
NUMBER OF STEPS
Figure 7. Integration Convergence
2.4 Comparative Efficiencies of Coordinate Systems
The discovery leading to the development presented in this document was that the Taylor’s series
with downrange as the independcent variable (downrange-base) converged faster than that with time
as the independent variable (time-base). However, no work was done to demonstrate directly that
trajecy vy integration converged more rapidly with downrange as the independent variable. Since
there are advantages to using time as the independent variable, the comparative efficiency of the

two approaches was investigated.
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A computer program was devised to calculate weapon impact points with the X-based and time-based
equations using identical, fourth-order, Runge-Kutta, integration formulas. Pains were taken to
ensure exact comparability of results to cases using the standard algorithm. The Mk 82S drogued
bomb was the primary weapon tested. A comparison of results is given in Figure 8. The magnitude
of the error in the computed range is plotted for a given number of integration steps. The two solid
lines compare the errors for release at a S00-foot altitude; the dotted lines are fur release at a 3,000-
foot altitude. Note that the errors are plotted on a logarithmic scale. Time-based integration for
this weapon requires almost three times as many integration steps to achieve the same accuracy.

This comparison holds over a wider range of release conditions.

Two effects contribute to the difference in the case of high drag bombs: (1) the bomb’s deceleration
is more nearly constant when considered as a function of downrange, making it easier to approximate
its average over an integration step; (2) due to comparative placement of the integration steps, the
bomb is going much faster at release than at impact and travels much more than one n-th of its trajec-
tory in the first one n-th of its time of fall. The first part of the trajectory also displays the highest
deceleration rates. Therefore, the time-based integration takes longer steps in the more critical portion
of the trajectory than does downrange-based integration with the same number of steps. This factor
in the accuracy difference could be moderated greatly with a suitable method of picking unequal
length time steps. However, a number of complexities arises with the use of unequal steps and this
approach has not been pursued.

Also some comparative evaluation was done for the M117 streamlined bomb. This weapon slows
down very little during fall, so the forces are more nearly constant and the integration intervals of
the two methods almost match. As a result, the comparative advantage of downrange-based integra-
tion is not as great, although it remains superior to time-based integration. This leads to a possibility
that time-based integration may prove better overall for some special applications, such as stream-
lined, time-fused cannisters.

Over the entire spectrum of trajectory calculation problems, it seems that downrange-base integration
has about a two to one average advantage. Different methods have different logical advantages when
dealing with special situations such as altitude-fusing, time-fusing, loft-delivery, etc. To achieve the
optimum for specific weapons one may have to use a combination of coordinate systems.
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Figure 8. Convergence Comparison Range - Based and Time -Based Integration
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3.0 ADAPTATIONS TO VARIOUS WEAPONS AND SAMPLE RESULTS

)
This section contains the mathematical/logical adaptations necessary to calculate impact points for
various weapons. Also, sample results and qualitative descriptions of these are given for a variety of
weapon types. The weapon types covered are: (1) streamlined bombs, (2) guns, (3) drogued
bombs, (4) ‘cluster bombs, and (5) unguided rockets.

The tabular form in which the sample results are presented requires some explanation. There are
three entries for each identified set of release conditions. The first entry is the ‘“‘range error” in
feet. This is the difference between the weapon range given in the ballistic table and the range
computed by the algorithm. A negative sign on the error means that the computed range was
smaller than the table range. The next entry is “angular error’ in milliradians. This converts the
range error into the equivalent angular error at the release point. This angular form is convenient
for comparison with other fire control system errors, most of which are basically angular. A good
rule of thumb is that if the range error is less than 10 feet or the angular error is less than 1 milli-
radian the computation error will not significantly degrade the overall system accuracy. The third
entry is the “‘time error” in percent. By including the uncoupled time equation in the integration,
the time of fall can be computed quite accurately. Ability to compute the time of fall accurately
will become important when the algorithm is put to an operational application. The target for all
tables is at sea level and there is no wind; this matches the conditions in the ballistic tables.

3.1 Streamlined Bombs

Calculation of streamlined bomb impact ranges does not require any adaptation of the process
described in Section 2.3.2. Sample results comparing the impact ranges calculated by the algorithm
to those from Navy ballistic tables are given in Tables VII through IX for the M117, Mk 82, and

Mk 76 bombs, respectively. Table X gives results outside the normal A-7E operating region for the
Mk 76 bomb. The tables show that the algorithm yields good results over a large range of release
conditioris.

3.2 Guns

The approach taken with guns is to treat them as streamlined bombs, handling the muzzle velocity

as a large ejection velocity. Sample results for the M61 gun are given in Table XI. The calculation

errors are defined as they were defined for bombs in the previous section. These sample calculations
¢ show that the bombing algorithm produces excelient results without any added logic or calculation.

3.3 Drogued Bombs

One of the major successes of the algorithm was successful calculation of the impact point of a
drogued bomb. These bombs are dropped in a streamlined configuration and then vanes or a para-
chute is deployed to greatly increase their drag and retard their forward motion. Previous methods
were marginal in working with high-drag projectiles and were unable to cope with the change in the
drag function. Presently, drogued bombs are handled by splitting the trajectory into two parts,
using a simple approximation for the streamlined portion and the algorithm for the drogued portion.
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Table VIl M117 Bomb Computation Accuracy

RELEASE SPEED (KNOTS)
:S' IE’?JSDEE 200 400 600
(FT) RANGE | ANGULAR | TIME RANGE | ANGULAR| TIME RANGE | ANGULAR | TIME
ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR
(FT) (MR) (% (FT) (MR) (%) (FT) (MR) (%)
1,000 +1 0.1 0.0 0 0.0 0.1 0 0.0 0.0
3,000 0 0.0 0.0 o) 0.0 0.0 0 0.0 0.0
5,000 +1 0.1 0.0 +1 0.0 0.0 =1 0.0 0.0
7,000 +1 0.1 0.0 +2 0.1 0.0 =2 0.0 0.0
9,000 +1 0.1 0.0 =l 0.0 0.0 +1 0.0 0.0
11,000 +1 0.1 0.0 =2 0.1 0.0 -2 0.0 0.0
13,000 +1 0.1 0.0 +1 0.0 0.0 -4 0.1 0.0
15,000 +1 0.0 0.0 +2 0.0 0.0 hil 0.0 0.0

REFERENCE: NAVAL WEAPONS LABORATORY BALLISTIC TABLE NUMBER 101, JULY 1967

CONDITIONS: LEVEL RELEASE
NO WIND
TARGET AT SEA LEVEL
NO EJECTION VELOCITY

Table VIII Mk 82 Bomb Computation Accuracy

RELEASE SPEED (KNOTS)
ARLETLIE'?J%EE = 2 =
Ty | RANGE JANGULAR| TME | RANGE | ANGULAR| TIME | RANGE | ANGULAR [ TIME
ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERRCR | ERROR | ERROR
(FT) (MR) (%) (FT) (MR) %) (FT) (MR) (%)
1,000 0 0.0 0.0 +1 0.0 0.0 +1 0.0 0.0
3,000 0 0.0 0.0 +1 0.0 0.0 0 0.0 0.0
5,000 +1 0.1 0.0 +1 0.0 0.0 0 0.0 01
7,000 0 0.0 0.0 +1 0.0 0.0 +2 0.0 0.0
9,000 0 0.0 0.0 0 0.0 0.0 +1 0.0 0.0
11,000 +1 0.1 0.0 0 0.0 0.0 +1 0.0 0.0
13,000 +1 0.1 0.0 +1 0.0 0.0 0 0.0 0.0
15,000 +1 0.0 0.0 0 0.0 0.0 -1 0.0 0.0

REFERENCE: NAVAL WEAPONS LABORATORY BALLISTIC TABLE NUMBER 169, MARCH 1969
CONDITIONS: LEVEL RELEASE

TARGET AT SEA LEVEL

NO WIND

NO EJECTION VELOCITY
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Table IX Mk 76 Bomb Computation Accuracy

RELEASE SPEED (KNOTS)

RELEASE 200 400 600

AL(TF‘%JDE 23285 AN(;%QR E]}'?IQAOER RANGE | ANGULAR| TIME RANGE | ANGULAR| TIME
1,000 0 0.0 0.0 0 0.0 0.0 1 0.0 0.0
3,000 +1 0.0 0.0 -1 0.0 0.0 -6 0.1 0.1
5,000 + 0.0 0.0 -2 0.1 0.1 -11 0.2 0.1
7,000 0 0.0 0.0 2 0.1 0.0 -15 0.3 0.0
9,000 +1 0.1 0.0 -3 0.1 0.0 +1 0.0 0.0
11,000 0 0.0 0.0 -4 0.1 0.0 26 0.5 0.0
13,000 +1 0.0 0.0 < 0.2 0.0 -34 0.7 0.1
15,000 0 0.0 0.0 -9 0.3 0.1 -39 0.8 0.1

REFERENCE: NAVAL WEAPONS LABORATORY BALLISTIC TABLE NUMBER 086. 0CTOBER 1966
CONDITIONS:  LEVEL RELEASE

NOWIND

TARGET AT SEA LEVEL

NO EJECTION VELOCITY

Table X Mk 76 Bomb Computation Accuracy In Extended Delivery Regime

REL EASE SPEED (KNOTS)

RELEASE 600 900 1,200

ALTITUDE [™"okNGE J ANGULAR| TIME | RANGE ] ANGULAR| TIME | RANGE ] ANGULAR| TIME
(FTY | ErRoR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR

(FT) (MR) ) (FT) (MR) ) (FT) (MR) (%)
10,000 =1 0.5 0.0 +4 01 0.1 -152 2.2 0.2
20,000 -8 0.8 0.0 13 0.7 0.1 91 1.2 0.3
30,000 48 0.8 0.0 -82 1.1 0.0 -2 0.3 0.0
40,000 -15 0.2 0.2 -1l 01 0.3 -39 0.4 03
50,000 -182 22 31 =123 13 1.9 -7 0.6 01
60,000 -38 0.4 0.2 428 0.2 0.2 -% 0.3 11
70,000 -19 0.7 4.8 -17 0.1 5.3 -21 0.1 18

REFERENCE: NAVAL WEAPONS LABORATORY BALLISTIC TABLE NUMBER 086, 0CTOBER 1966
CONDITIONS: LEVEL RELEASE

NO WIND

TARGET AT SEA LEVEL

NO EJECTION VELOCITY
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Table XI M61 Gun With M56 Round Computation Accuracy

RELEASE SPEED (KNOTS)

DIVE JRELEASE 300 450 600
mg‘éf ALI;%'DE RANGE | ANGULAR] TIME | RANGE | ANGULAR| TIME | RANGE | ANGULAR] TIME
ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR
(FT) (MR) (%) (FT) (MR) (%) (FT) (MR) (%)
5| Lo | -1 01 = 0.1 0.0 -1 0.1 0.0
51 150 | -l 01 05 | -2 01 a5 | -l 0.1 0.5¢
B | 150 | —2 01 03 | -2 01 08 22 01 04
20 | 1,00 0 0.0 30 0 0.0 0.0 0 0.0 LI
20 | 1250 0 00 0.0 0 0.0 0 0 0.0 00
20 | 150 | -1 01 0.5° 0 0.0 06 | -1 0.1 0
20 | 1m0 | - 01 0ar | -l 01 0.0 =1 01 05

*TIME ERROR OF 0.1 SECOND
REFERENCE: ARMAMENT MEMORANDUM REPORT 64-5, FEBRUARY 1964
CONDITIONS:  TARGET AT SEA LEVEL

NO WIND

3,300 FT/SEC MUZZLE VELOCITY

As noted before, the treatment of retarded weapons is complicated by the discontinuity in the drag
coefficient at drogue deployment. If it is assumed that the deployment occurs instantaneously at a
time th which is known or can be culculated in advance, the differential equations (2-1) have
discontinuous coefficients at t, due to the change in the ballistic drag coefficient Kp . Corre-

sponding to tpy is point XD at which (2-6) and (2-7) have discontinuous coefficients. In this

case, it is best to split the integration domain into two parts corresponding to the different drag
regions. (See Figure 9.)

If the drogue deployment occurs shortly after release as for the Mk 82 Snakeye drogued bomb, this
difficulty can be overcome easily. Since Xp isvery small compared to Xp and the bomb has very

little drag in the first region, it is sufficient to integrate from release to Xp inone step. Normally,
tp is given as a function of the dynamic air pressure. The point X and the values of Vxp > VyD >
and Yp must be computed before the Runge-Kutta procedure can be used to integrate from Xp to

XR - It is probable that due to shortness of tp (0.5 second) the vacuum solution would suffice. How-
ever, it is not difficult to account for most of the drag effects in the interval (0, Xp) as follows.
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LOW-DRAG | HIGH-DRAG
REGION l REGION
|
il e
X D (DROGUE DEPLOYMENT) X R (IMPACT)
Figure 9. Drag Discontinuity
Xp is expanded first, in a power series in t about the point t =0 . That is:

X() = X0 + X +23Q 24 (3-1)

The coefficients are computed readily from the release conditions. Denoting the release conditions
by the subscript zero,

X(0) = ¢, X(0)= Vxg, X(0)=HgX(©0) =-HyVyxg (3-2)
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Retaining three terms in the series and evaluating at t[, yields

XD = ontD(l -.5 HotD). (3-3)
A similar expansion yields Y, ‘
| .

Differentiating (3-1) with respect to t and evaluating at tp gives

VXD on(l - HOtD)' (3-5)

Similarly, Vyy is given by {1

VYD VYO - tD (HOVYO + g(Yo)). (3-6)

The initial value of XD . YD " VXD , and VYD needed for the integration process over the high-

drag region is given by (3-3) through (3-6), respectively. The integration over this region is performed
as described in Section 2.0.

Sample results for the drogued Mk 82S bomb are given in Table XIIL.

34 Cluster Bombs

A cluster bomb, which is a dispenser containing many individual bombs, is generally released in a
streamlined shape. Then, at some predetermined condition (altitude, time after release, slant range,
etc.), the bombs are released from the dispenser. The bombs have a much higher drag-to-mass ratio
than the dispenser and slow down rapidly. Ballistics agencies have developed drag tables fora
fictitious bomb which simulates the characteristics of the center of the pattern as though it were a
single bomb.
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Table XIl Mk 82S Bomb Computation Accuracy
RELEASE SPEED (KNOTS)

RELEASE 200 400 600
ALTITUDE
T | RANGE |ANGULAR| TIME | RANGE | ANGULAR [ TIME | RANGE [ANGULAR [ TIME
ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR | ERROR
(FT) (MR) (%) (FT) (MR) (%) (FT) (MR) (%)
1,000 +1 03 0.0 +1 0.2 0.0 0 0.0 0.0
2,000 +1 03 0.0 0 0.0 00 0 0.0 0.0
3,000 0 0.0 0.0 0 0.0 0.1 -1 0<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>